Statistical Investigation of Structure in the Discrete Logarithm
نویسنده
چکیده
The absence of an efficient algorithm to solve the Discrete Logarithm Problem is often exploited in cryptography. While exponentiation with a modulus, bx ≡ a (mod m), is extremely fast with a modern computer, the inverse is decidedly not. At the present time, the best algorithms assume that the inverse mapping is completely random. Yet there is at least some structure, such as the fact that b ≡ b (mod m). To uncover additional structure that may be useful in constructing or refining algorithms, statistical methods are employed to compare mappings, x 7→ bx (mod m), to random mappings. More concretely, structure will be defined by representing the mappings as functional graphs and using parameters from graph theory such as cycle length. Since the literature for random permutations is more extensive than other types of functional graphs, only permutations produced from the experimental mappings are considered.
منابع مشابه
Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملInvestigation of extinction spectra of THTS Mn thin films and comparsion with discrete dipole approximation simulation results
In this work, the extinction spectra of the nano-structure of the Tilt Helical and Stair-like Towers of Mn thin films were obtained using discrete dipole approximation (DDA) simulation for both s-and p-polarization at two incident light angles of 10°, and 60° at different azimuthal angles for the there samples with different tilt. Obtained results are compared with the experimental optical exti...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009